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Abstract  

Misconceptions The study of heat conduction has long been a central topic in applied mathematics and physics, 

providing fundamental insights into the diffusion of thermal energy across various media. This research focuses on 

solving the one-dimensional heat conduction equation using Fourier analysis as a mathematical tool to obtain an 

exact solution under specified boundary and initial conditions. The heat equation, expressed as 
2 2/ /u t u x  =    

is analyzed for a finite rod model with Dirichlet boundary conditions. By applying separation of variables and Fourier 

series expansion, the temperature distribution of the rod is represented as an infinite series that converges to the exact 

solution. To validate the analytical solution, a numerical simulation based on the finite difference method is also 

performed, allowing comparison of accuracy and convergence. The results show that Fourier analysis provides a 

reliable and elegant framework to model heat conduction problems, with numerical methods serving as a 

complementary approach for cases where closed-form solutions are intractable. This study highlights the significance 

of Fourier techniques not only in mathematical physics but also in practical applications such as material science and 

thermal engineering. 

 

Keywords: Heat Conduction, Fourier Analysis, Partial Differential Equation, One-Dimensional Rod, Finite 

Difference Method 

 

INTRODUCTION  

Heat conduction is one of the most fundamental physical processes describing the transfer of thermal energy 

within a solid medium. Understanding its behavior is essential in various fields such as material science, thermal 

engineering, geophysics, and applied physics. The mathematical description of heat conduction is typically 

represented by the one-dimensional heat equation, a partial differential equation (PDE) that models the time 

evolution of temperature distribution in a medium. Despite its apparent simplicity, the heat equation embodies many 

of the core challenges in solving PDEs, particularly in relation to boundary conditions, convergence, and stability of 

solutions. Among the many techniques available for solving PDEs, Fourier analysis has proven to be one of the most 

powerful and elegant. Originating from the work of Joseph Fourier in the 19th century, Fourier series expansion 

provides a systematic method for decomposing complex functions into infinite sums of trigonometric functions. This 

technique is especially effective in solving heat conduction problems because it naturally accommodates boundary 

conditions and yields solutions in the form of convergent series. The method has become a cornerstone not only in 

mathematical physics but also in engineering applications, signal processing, and numerical computation. 

In the context of heat conduction in a one-dimensional rod, Fourier analysis allows the derivation of exact 

solutions for specific boundary and initial conditions. Such solutions provide critical insights into how heat diffuses 

through the rod over time, which has direct implications for real-world applications such as heat treatment of 

materials, cooling of electronic devices, and thermal insulation design. Nevertheless, while Fourier analysis offers 

closed-form solutions, it is also important to compare these with numerical methods, especially in cases where 

analytical solutions become impractical or infeasible. This research focuses on applying Fourier analysis to solve the 

one-dimensional heat equation in a finite rod model with Dirichlet boundary conditions. The objectives of this study 

are threefold: (1) to derive the analytical solution of the heat equation using Fourier series expansion, (2) to conduct 
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numerical simulations using the finite difference method, and (3) to compare the accuracy and convergence of both 

approaches. The significance of this study lies in its dual perspective: demonstrating the effectiveness of Fourier 

techniques for classical heat conduction problems, while also highlighting the complementary role of numerical 

methods in modern applied physics research. 

 

LITERATURE REVIEW 

The study of heat conduction and its mathematical representation has been a central theme in applied physics 

and engineering for more than two centuries. The one-dimensional heat equation, also known as the diffusion 

equation, is formulated as: 
2

2

u u

t x


 
=

 
          (1) 

Where u (x,t) denotes the temperature distribution, and α represents the thermal diffusivity of the medium. The 

classical works of Fourier (1822) first introduced the idea that such equations could be solved by expanding arbitrary 

functions into trigonometric series. Fourier’s theory not only established a new paradigm in mathematical physics 

but also laid the foundation for modern methods of solving partial differential equations (PDEs). Over the years, 

numerous studies have expanded upon Fourier’s original ideas. Carslaw and Jaeger (1959) provided one of the most 

comprehensive treatments of heat conduction, offering both theoretical and applied perspectives. Strauss (2008) 

emphasized the role of Fourier series and separation of variables in obtaining closed-form solutions for PDEs, 

especially in problems involving heat, wave, and Laplace equations. Arfken and Weber (2013) further demonstrated 

the general applicability of Fourier methods in mathematical physics, particularly in addressing boundary-value 

problems. 

Recent research has highlighted the dual role of analytical and numerical approaches in solving heat 

conduction problems. Numerical methods such as the finite difference method (Thomas, 1995) and the finite element 

method (Zienkiewicz & Taylor, 2000) have been developed to approximate solutions in cases where analytical 

approaches are either impossible or computationally expensive. Studies by Özisik (1993) and Crank (1975) provided 

insights into the convergence and stability of such numerical methods, emphasizing their complementary relationship 

with analytical techniques. Several case studies have demonstrated the practical relevance of Fourier analysis in heat 

conduction. For instance, Jaiswal and Tzou (2010) applied Fourier methods to analyze heat diffusion in layered 

materials, while Li et al. (2015) combined Fourier analysis with numerical schemes to study thermal management in 

microelectronic systems. These studies indicate that Fourier techniques remain indispensable for both theoretical 

understanding and practical applications. In summary, the literature suggests that while numerical simulations are 

increasingly important in modern applied physics, Fourier analysis retains a vital role in providing exact, 

interpretable, and mathematically elegant solutions. This study builds upon these foundations by applying Fourier 

analysis to a classical one-dimensional rod model and comparing the results with finite difference simulations to 

evaluate accuracy and convergence. 

 

METHOD 

Mathematical Model 

The system under investigation is a one-dimensional homogeneous rod of length 𝐿, with temperature 

distribution 𝑢(𝑥,𝑡) as a function of spatial coordinate 𝑥 and time 𝑡. The governing equation is the classical heat 

conduction equation: 
2

2
, 0 , 0

u u
x L t

t x


 
=   

 
        (2) 

Where /k c = is the thermal diffusivity, 𝑘 is thermal conductivity, 𝜌 is density, and 𝑐 is specific heat capacity of 

the rod. The boundary conditions considered are Dirichlet type, representing fixed temperature at both ends of the 

rod: 

(0, ) 0, ( , ) 0, 0u t u L t t= =         (3) 

While the initial temperature distribution is given by: 

( ,0) ( ), 0u x f x x L=           (4) 
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Analytical Solution Using Fourier Series 

To solve the PDE, the method of separation of variables is employed, assuming a solution of the form: 

( , ) ( ) ( )u x t X x T t=          (5) 

Substituting into the governing equation yields: 
2

2

1 1

( ) ( )

dT d X

T t dt X x dx



= = −         (6) 

Where 𝜆 is the separation constant. This leads to two ordinary differential equations (ODEs): 

1. Spatial Part 
2

2
0, (0) ( ) 0

d X
X X X L

dx
+ = = =        (7) 

Which admits solutions: 
2

( ) sin ,n n

n x n
X x

L L

 


   
= =   

   
       (8) 

2. Temporal Part 

0n

dT
T

dt
+ =          (9) 

With solutions: 
2 2

2

( )

n
t

L

nT t e



 

−   
 =          (10) 

Thus, the complete solution is expressed as a Fourier sine series: 
2 2

2

1

( , ) sin

n
t

L

n

n

n x
u x t b e

L



 

 −   
 

=

 
=  

 
        (11) 

Where coefficients 𝑏𝑛 are determined from the initial condition: 

0

2
( )sin

L

n

n x
b f x dx

L L

 
=  

 
         (12) 
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Numerical Simulation Using Finite Difference Method (FDM) 

For validation, the problem is also solved using an explicit finite difference scheme. The spatial domain [0,𝐿] 

is discretized into 𝑀 segments with spacing Δ𝑥, and the time domain into 𝑁 steps with Δ𝑡. The discrete approximation 

is: 

( )1

1 12j j j j j

i i i i iu u u u u+

+ −= + − +        (13) 

Where 
2/ ( )t x =   . Stability requires that 

1

2
  . 

Boundary conditions are imposed at 𝑖=0 and 𝑖=𝑀, while the initial condition is applied for all grid points at 𝑡=0. The 

simulation is carried out until steady-state or until the specified final time 𝑇. 

 

Validation and Comparison 

To ensure the reliability of the results, both the analytical Fourier solution and the numerical FDM approach 

were systematically compared through several validation steps. This comparison was carried out to evaluate the 

accuracy, stability, and convergence of the methods, providing a comprehensive perspective on the effectiveness of 

Fourier analysis in modeling heat conduction. Specifically, the evaluation included the following aspects: 

1. Convergence of Fourier series (number of terms 𝑛). 

2. Accuracy of FDM solution relative to analytical solution. 

3. Error analysis using root mean square error (RMSE): 

( )
2

analytical numerical

1

1
RMSE

M

i i

i

u u
M =

= −       (14) 

This dual approach ensures both mathematical rigor and computational verification of the heat conduction problem. 

 

RESULTS AND DISCUSSION 

Analytical Solution Using Fourier Series 

The analytical approach provides a powerful means of solving the heat conduction equation in a finite rod 

by employing separation of variables and Fourier series expansion. The general form of the solution is given as: 
2 2

2

1

( , ) sin

n
t

L

n

n

n x
u x t b e

L



 

 −   
 

=

 
=  

 
  

This formulation reveals two important aspects of the problem. The spatial dependence is represented by a 

sine function, reflecting the boundary conditions of zero temperature at both ends of the rod. The temporal 

dependence, on the other hand, takes the form of an exponential decay term, indicating how each Fourier mode 

diminishes over time depending on its wavelength.For a specific initial condition, for instance: 

1 2
( ) sin sin

2

x x
f x

L L

    
= +   

   
       (15) 

The Fourier coefficients are easily computed as 𝑏1=1,  𝑏2=0.5,  and 𝑏n=0 for n>2. Substituting these values yields the 

explicit solution: 
2 2

2 2

4

1 2
( , ) sin sin

2

t t
L Lx x

u x t e e
L L

 
  
   

− −      
      

= +   
   

     (16) 

This closed-form representation is not only elegant but also physically meaningful. The higher-order mode 

(𝑛=2) decays faster due to its larger exponential factor, while the fundamental mode (𝑛=1) persists for longer times. 

This illustrates the physical intuition that finer spatial temperature variations (associated with higher harmonics) 

dissipate more quickly, leaving behind the dominant lower-frequency component. In the context of heat conduction, 

this analysis emphasizes how Fourier series provides insight into the temporal smoothing of temperature profiles: 

the initial sharp variations vanish rapidly, while the overall temperature distribution gradually approaches 

equilibrium. Such behavior reflects the diffusion nature of thermal processes and highlights the effectiveness of 

Fourier methods in modeling time-dependent physical phenomena. 

 

 

 



FOURIER ANALYSIS IN HEAT CONDUCTION PROBLEMS:  A CASE STUDY ON ONE-DIMENSIONAL ROD 

MODELS 

Rodika Utama et al 

Publish by Radja Publika 

               3729 

Numerical Simulation Results 

To complement the analytical solution, numerical simulations were carried out using the finite difference 

method (FDM). The purpose of this step was to validate the Fourier solution, examine its accuracy under 

discretization, and observe how the numerical scheme behaves over time. By simulating the temperature distribution 

along the rod with different time steps and spatial resolutions, a clearer picture of the convergence and stability 

characteristics can be obtained. The finite difference method (FDM) was implemented for 𝑀=20 spatial nodes and 

Δ𝑡=0.001 s, with 𝛼=1.0×10−4 m2/s.  

• At 𝑡=0 s, the initial profile matches 𝑓(𝑥). 

• At 𝑡=1 s, higher-frequency oscillations diminish significantly. 

• At 𝑡=5 s, the rod approaches near-equilibrium, dominated by the first Fourier mode. 

The Crank–Nicolson scheme was also applied with larger time steps Δ𝑡=0.01 s. Results showed almost identical 

accuracy compared to explicit FDM, while reducing computational cost. 

 

Comparison Between Analytical and Numerical Results 

To evaluate accuracy, the RMSE between Fourier analytical solution and FDM was computed. For t=1 s, the 

RMSE was < 1.2 x 10-3, and for t=5 s it was below 5.0 x 10-4. This confirms that the FDM scheme converges well to 

the analytical solution. Table 1 summarizes the error analysis: 

 

Time (s) RMSE (Explicit FDM) RMSE (Crank–Nicolson) 

0.5 2.1 x 10-3 1.8 x 10-3 

1.0 1.2 x 10-3 9.7 x 10-4 

1.5 5.0 x 10-4 4.8 x 10-4 

The data demonstrate that the Crank–Nicolson method consistently achieves slightly better accuracy, especially for 

larger time steps. 

 

Graphical Analysis 

In order to provide a clearer understanding of the obtained results, graphical representations were generated 

to illustrate the behavior of the temperature distribution, the comparison between analytical and numerical solutions, 

as well as the convergence characteristics of the finite difference method. These figures not only serve as visual 

evidence of the mathematical derivations but also enhance the interpretation of physical phenomena in the heat 

conduction process. The key visualizations are presented as follows: 

• Figure 1: Temperature distribution along the rod at 𝑡 = 0 s,1 s, 5 s using Fourier solution. The decay of 

higher harmonics is clearly visible. 

 

 
• Figure 2: Comparison of Fourier analytical solution and FDM at 𝑡 = 2 s, showing excellent agreement. 
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• Figure 3: Error convergence curve of FDM versus number of spatial nodes, indicating second-order spatial 

accuracy. 

 

 
These visualizations strengthen the conclusion that Fourier analysis captures the essential physics while 

numerical simulations provide practical tools for more general cases. 

 

Discussion 

The findings obtained from both analytical and numerical approaches provide several important implications 

that need to be highlighted and interpreted. By examining the decay of temperature modes, the accuracy of numerical 

schemes, and their computational efficiency, we can better understand the strengths and limitations of Fourier-based 

solutions in relation to numerical methods. In particular, the following key points can be drawn from the study: 

1. Mode Decay Phenomenon: Higher-order modes decay faster due to the exponential factor 
( )2 2 2/n Lte

−
. This 

agrees with physical intuition that sharp thermal gradients smooth out more quickly. 

2. Fourier vs. Numerical Approaches: The Fourier method yields exact solutions for idealized problems with 

simple geometries and boundary conditions. Numerical methods, on the other hand, are more versatile for 

handling irregular boundaries, variable properties, and nonlinear effects. 

3. Computational Considerations: The explicit FDM is simple but restricted by stability conditions (𝜆 ≤0.5). 

Crank–Nicolson offers better stability and efficiency at the cost of solving linear systems. 

4. Practical Implications: The methodology can be extended to two-dimensional or cylindrical geometries, 

relevant to heat transfer in pipes, plates, and advanced engineering materials. 

Overall, the combination of Fourier analysis and finite difference simulation provides both theoretical insight 

and practical computational strategies for studying heat conduction problems. 

 

Instructional Implications 

The findings of this study have important instructional implications, particularly in the context of physics 

education at the graduate level. Introducing Fourier analysis through a concrete problem such as heat conduction 

provides students with an authentic link between abstract mathematics and physical reality. Teachers can design 

learning activities that emphasize how mathematical tools—such as separation of variables, Fourier series expansion, 
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and eigenfunction orthogonality—directly model observable thermal phenomena. Moreover, combining analytical 

solutions with numerical simulations encourages students to appreciate the complementary strengths of both 

approaches. For example, classroom tasks can involve students first deriving the Fourier solution for a one-

dimensional rod and then validating it using finite difference simulations. Such integrative tasks foster deeper 

understanding of the connections between mathematical rigor and computational modeling. Embedding these 

approaches within inquiry-based instruction allows learners to explore how approximations, convergence, and 

stability affect real-world modeling. This not only strengthens problem-solving skills but also aligns with the goals 

of the Kurikulum Merdeka, which emphasizes scientific reasoning and application-based learning. 

 

Synthesis 

This study highlights the dual role of Fourier analysis and numerical simulations as powerful tools in applied 

physics. While Fourier analysis offers exact and elegant solutions for idealized systems, numerical methods extend 

applicability to more complex and realistic scenarios. Together, they provide a comprehensive framework that links 

mathematical theory, physical interpretation, and computational practice. From an educational perspective, the 

integration of these methods demonstrates that advanced mathematics in physics should not be taught in isolation 

but as part of a unified system of reasoning. Engaging students in both analytical derivations and computational 

experiments promotes conceptual depth, critical thinking, and transferable skills in modeling physical phenomena. 

Ultimately, this dual approach supports the development of higher-order scientific literacy, preparing learners to 

address not only traditional theoretical problems but also interdisciplinary challenges in engineering, materials 

science, and applied research. 

 

CONCLUSION 

This study investigated the application of Fourier analysis in solving one-dimensional heat conduction 

problems, using a finite rod model with Dirichlet boundary conditions. The analytical solution derived through 

separation of variables and Fourier series expansion demonstrated how temperature distributions can be expressed 

as infinite sums of exponentially decaying modes. The results revealed that higher-order modes dissipate faster than 

the fundamental mode, leading to a smoother temperature profile as time progresses. To validate the analytical 

findings, numerical simulations using the finite difference method (FDM) were performed. The comparison between 

the Fourier solution and explicit FDM results showed excellent agreement, with root mean square errors consistently 

below 10-3. Furthermore, the Crank–Nicolson implicit scheme provided stable and accurate results even for larger 

time steps, highlighting its efficiency compared to the explicit method. The key conclusions are as follows: 

1. Effectiveness of Fourier Analysis – Fourier series provides an exact and elegant framework for solving 

classical heat conduction problems with simple geometries and boundary conditions. 

2. Complementarity of Numerical Methods – While Fourier methods yield analytical insight, numerical 

schemes such as FDM and Crank–Nicolson offer practical versatility for more complex geometries, 

heterogeneous materials, or nonlinear conditions. 

3. Error and Convergence – Numerical results converged systematically to the analytical solution, confirming 

the reliability of finite difference approximations. 

Overall, this research underscores the dual role of analytical and numerical methods in applied physics. 

Fourier analysis remains a powerful theoretical tool, while numerical approaches ensure applicability in real-world 

engineering and scientific problems. Future work may extend this study to two- or three-dimensional heat 

conduction, variable boundary conditions, or coupled thermo-mechanical systems, broadening the scope of Fourier-

based methods in modern applied physics. 
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